
An interesting observable of the Schwinger model is the evolution of electron-positron pair 
production (as sourced by the Hamiltonian hopping term) following initialization of the empty 
configuration.  At right, we show data and theoretical values for both this pair production and the 
expectation value of the energy in the electric field.  The solid curves are exact results while the 
data points are quadratic extrapolations (in the noise parameter r) obtained with the ibmqx2 
quantum computer.  While there is an additional configuration containing two electron-positron 
pairs whose dynamics are not represented here, the energy in the electric field is seen to correlate 
naturally with the presence of charged particles.  For this calculation, the SU(4) propagator 
decomposition of [4] is utilized---the nine angles of the above circuit are classically calculated as a 
function of time.  As the structure and depth of the quantum circuit then used to propagate to time 
t is independent of t, precision of the expectation values is also independent of the scaled time.

Choosing a Basis:  
    In order to give structure to the qubit 
register representing the field at a given 
site, any basis may be chosen. Three 
nice choices are: JLP [1] using the 
eigenstates of the field operator, MSAH 
[5] digitizing harmonic oscillator 
wavefunctions into eigenstates of the 
field operator and [6] using exact 
harmonic oscillator wavefunctions.  JLP 
allows the field operator to be written as 
a sum of single qubit operators (leading 
to low-depth, low-entanglement circuits), 
while the use of harmonic oscillator 
bases allows a description of localized 
wavefunctions with fewer basis states. 
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allowed by the NS sampling 
theorem (green points at left).  
As is done with the Symanzik 
action in Lattice QCD, the 
polynomial errors in the 
digitization can be order-by-
order suppressed by adding higher-
order operators to the Hamiltonian 
(blue points at left).  In Quantum 
computing, it is possible to fourier 
transform to conjugate momentum 
space where the Pi operator is diagonal, 
allowing improvement to all orders.    
With quantum noise, the NS saturation 
point should be tuned to match the 
expected precision of quantum 
hardware.   

The field operator in the JLP basis can 
be written as a sum of single-qubit 
operators.  As a result, the qubit 
interactions for each spatial site are 
limited to two-body operators (QFT and mass term) and four-body 
operators (fourth-order self-interaction) for the Trotterized time 
evolution.  Pauli decomposition of the HO propagator contains 
interactions between all qubits in the site register, causing the number 
of 2-qubit entangling operators to grow more rapidly in the HO basis.Implementation of the Gradient Operator:

      On the right, the quantum resources for representation of the scalar field at a single site are quantified.  
In order to connect the qubit registers to build lattices in higher spatial dimensions, we quantify the cost of 
a nearest neighbor decomposition of the gradient operator in field space (table above).  As was the case in 
the single site, the JLP basis requires only 2-qubit interactions between the two site registers while the HO 
basis requires entangling interactions between all qubits within the pair of site registers.  The resulting 
number of CNOTs naively required to interact two 6-qubit site registers differs by a factor of ~8700.    As 
was the case for the conjugate momentum operator, the QFT could be used to remove polynomial errors in 
the lattice spacing.  However, the proposed retention of locality for the gradient avoids both the maximum 
size of entangling operators and the computation time for trotterized time evolution from growing with the 
size of the lattice---a naturally-motivated and desrable scaling.
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Representing de-localized wavefunctions benefits 

from the structure-agnostic basis of JLP.  With a 

tuned basis of 6 qubits, the symmetic ground state 

is distinguished from the asymmetric excited state.

Tuning Plots:
     Given a number of qubits, it is important to construct 
and a basis to accurately describe the low-energy subspace, 
maximizing the physics captured with available quantum 
resources.  A well-tuned basis places the computation at the 
NS saturation point.  Left of this point, exponential 
convergence is achieved in the number of qubits.  Right of 
this point, conjugate momentum space is undersampled and  
precision degrades.  Tuning plots for the JLP and Harmonic 
Oscillator bases are shown at right for an interacting 0+1 
dimensional scalar field.  For such a localized wavefuncton, 
the HO basis provides higher precision per qubit.

Precision, Improvement and Noise:
        To implement the conjugate momentum term, one option is to retain field-
space locality with a nearest neighbor operator.  This choice introduces 
polynomial errors in the field digitization, destroying the exponential 

Variational Quantum Eigensolver:
     The ground state of the Schwinger Model can be 
initialized and explored through implementation of  the 
variational quantum eigensolver.  After decomposing 
the Hamiltonian in the Pauli basis consisting of the 
seven operators at right and parameterizing the ground 
state wavefunction with a 3-angle circuit ansatz, 
ensemble projective measurements within the four 
unique bases allow extraction of the angular-dependent 
Hamiltonian expectation value.  Using energy estimates 
to inform a Bayesian posterior in the 3-dimensional 
space of angles determines the correct circuit for 
ground state preparation. 

Noise Extrapolation: 
     Without quantum error correction  on hardware with 
imperfect gates, "classical error correction" (data analysis) is 
crucial for interpreting and understanding the results of 
quantum computing experiments.  Of critical concern are 2-
qubit entanglement errors, measurement/read-out errors, 
over/under rotations, bit flips, phases errors, etc.  We utilize 
a 1-parameter polynomial extrapolation to capture the 
leading effects of the first of these.  The noise parameter, r, 
indicates the number of CNOTs used in place of each CNOT 
of the VQE ansatz (containing only 2 CNOTs in the original, 
r = 1, circuit), effectively amplifying this source of error and 
allowing its extrapolated removal. As seen at left, this
extrapolation impacts the calculated ground state energy at 
the 10% level.

The Schwinger model can be 
mapped to qubits with one for each 
site (fermion occupation) and a 
register for each link (electric flux). 
This leaves an exponentially large 
part of the space unphysical---not 
satisfying the local constraint of 
Gauss's Law.  Instead, the physical 
space of desired parity and 
momentum can be  constructed 
classically with configurations 
mapped to quantum states.  This 
reduces the simulation of the 
system above from 12 to 2 qubits.

To reduce classical resources for time evolution, the Schwinger model 
propagator can be decomposed into a sum of 7 Paulis (see statics 
above) and the exponentials implemented individually, Trotterizing the 
evolution.  Now, rather than fixed as in the SU(4) decomposition 
method, the required coherence time increases with the scaled time.  
On the left is the probability of finding an electron-positron pair in the 
two-spatial-site Schwinger model from the initially-empty state, 
showing dynamical quantum fluctuations.  In the unshaded region, the 
blue points are quadratic extrapolations to "zero noise" in a parameter, 
r.  For a step size of 0.1, the coherence time is exceeded in the gray 
region and the measured probabilities flatten to the classical value.

 

The Schwinger Model:
     Quantum electrodynamics in one spatial dimension shares many features with 
QCD such as confinement (along with a screening vacuum) and spontaneous 
breaking of chiral symmetry.  When this theory is latticized with staggered 
fermions and transformed to spin degrees of freedom using the Jordan-Wigner 
transformation, the Hamiltonian describing the system may be written as below.  
The kinetic (hopping) term contains raising and lowering operators, modifying the 
value of the electric field on the link (which is naturally quantized in one 
dimension and here truncated at field values ∓ 1) while creating or annihilating 
an electron-positron pair at the associated sites on either side.  In this model, 
there is only one dynamical link---all others can be contstrained by Gauss's law 
and the distribution of the fermion content.  Rather than integrating out these 
degrees of freedom and producing non-local interactions, we choose to work with 
physical, symmetry-projected configurations of the lattice.  As a result, inevitable 
errors occurring in today's noisy quantum devices are incapable of populating 
states outside of the correct dynamical Hilbert space.

Nyquist-Shannon (NS) Sampling Theorem:
    Introduced in this context by [5] and developed in the 1930's, gives 
guidance for digitizing continuous signals (from audio recordings to 
wavefunctions) when the signal has finite frequency bandwidth (as is the 
case for the conjugate momentum of a latticized scalar field).  After reaching 
the NS saturation point, the structure of momentum space is captured and 
the description is exponentially converged.


