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| Choosing a Basis: Quantum electrodynamics in one spatial dimension shares many features with I I

| | | | | | ! ! In order to give structure to the qubit QCD :such as c_onfinement (along with a screening_ VaCUL:II'T'l) and_ spontaneous : :
| | | . ' ' register representing the field at a given breal_<|ng of chiral symmetry. _When this theory is Iatt_|C|zed with stagg_ered > : : The Schwinger model can be
| | | , 5¢ site, any basis may be chosen. Three I fermions an_d transforme_d to_ spin de_gr_ees of freedom using the_ Jordan-Wigner mapped to qubits with one for each
R - d , , , , | | nice choices are: JLP [1] using the transf_orm_atlon, the Hamiltonian f:lescrl_bl_ng the system may be written as I?elow. D - D site (fermion occupation) and a
,. , , . : | | eigenstates of the field operator, MSAH The kinetic (hopplng_) tel_‘m contains raising anc_:l Iovyerlng operators, m_odlfyl_ng the Site 1 Site 2 register for each link (electric flux).
, , \ ! | | [5] digitizing harmonic oscillator v.:::alue (_)f the electric field on th_e link (Whl(ih 1S na_lturally _quantlzed_lr_1 one . . This leaves an exponentially large
| . | . . | ¢ fion it iaenstat £ th dimension and here tru_ncated at ﬂeld_values_+ 1) wh_lle crea_ltlng or an_nlhllatlng Site 0 Site 3 part of the space unphysical---not

t . ! . - waverunctions O €ligenstates o € an electron-positron pair at the associated sites on either side. In this model,

- satisfying the Ilocal constraint of
Gauss's Law. Instead, the physical
space of desired parity and

P - .
max field operator and [6] wusing exact there is only one dynamical link---all others can be contstrained by Gauss's law

kk J Nyquist-Shannon (NS) Sampling Theorem: . , . harmonic oscillator wavefunctions. JLP and the distribution of the fermion content. Rather than integrating out these
Introduced In this context by [5] and developed in the 1930's, gives allows the field operator to be written as degrees of freedom and producing non-local interactions, we choose to work with

— guidance _for digitizing cc?ntinuous _signals (from audio _recordings to a sum of single qubit operators (leading physical, symmetry-projected configurations of the lattice. As a result, inevitable > mom_entum can be co_nstruc_:ted
n- :18 i 6 wavefunctions) yvhen the signal has flnlte_ frequency b_andW|dth (as is ’Fhe to low-depth, low-entanglement circuits), errors occurring in today's noisy quantum devices are incapable of populating classically with conﬂguratlon_s
| | | case for the conjugate momentum of a latticized scalar field). After reaching while the use of harmonic oscillator states outside of the correct dynamical Hilbert space. — mapped to quantum states. This
0.301 i | : the NS saturation point, the structure of momentum space is captured and pgses allows a description of localized N —1 Site 1 Site 2 reduces the simulation of the
0255 0.01 | 7/ /! "\ \ the descrlptlon IS eXpOnentlally Converged wavefunctions with fewer basis states. Is system above from 12 to 2 qultS
- _ B/7 AR AN\ | : . T + s i
= | N Jordan-Lee-Preskill Basis: H=x ) (opLyo, . +of Lio,) Stat|CS
§ i -5 I ," I I ‘\ I
= 0. 107 / \ _
0.10; ( / I | \ | ~ DU I
: o | | \ —iHst . t 4 792 <P¥9 INT Neo—1 i -0'y®a'y|:|0'z®0'z50'z®0'x-0'x®0'x |
0.05} 10-8| f | | \ | | € o ]\}linoo — 3 (2M 49 ¢max) QEF Tsym ( L6V 7 ) “P QET sym B I J s I Variational Quantum Eigensolver: : pl®o, no.®1 nlI® o f
0.001 _ . : —— - e L - + l2 | n -z The ground state of the Schwinger Model can be 1.0+ X ad ad l
—20 —10 O 10 20 n | O'n S : :
2 initialized and explored through implementation of the : :
I H a rm O n iC OSCi I Iato 8 Ba S i S . n=0 variational quantum eigensolver. After decomposing I |
e o n e ra C I n g Ca a r . I BN BN =B =N \ the Hamiltonian in the Pauli basis consisting of the 0.5¢ B
- — tors at right and parameterizing the ground : :
1-—site (A = 32 Rz (czr1+ seven opera _ _ ng t _ |
Tuning Plots: - = ( — ) - / z (cz1127) l l state wavefunction with a 3-angle circuit ansatz,
Given a number of aubits. it is imbportant to construct 1000.00" === _i(Hbasis+5Hw )t 1 ] t t t ‘ ensemble projective measurements within the four
_ 9 ! P - T CCommmmmm : © ? Am Rz (crziag) [FLH [ Bz (crxiag) O Bz (czxia7) @ unique bases allow extraction of the angular-dependent
- i LT T ~ __?-—-—\-_7‘—":----' . . . . .
and d baS|S tO aCCUFate|y deSCI"Ibe the IOW energy SUbSpaCE, - \\\ ,,¢ ~g ”’_—— \/ p Hamiltonian expectat|on value. Us|ng energy estimates
maximizing the physics captured with available quantum 0.01! " . - L~ .4 N \_ Rz (crrz47) ‘ to inform a Bayesian posterior in the 3-dimensional
: : : , % — i f angl rmin h rr ircuit for
resources. A well-tuned basis places the computation at the : o~ P space of angles dete es the correct circuit fo
_ _ _ _ _ : A ey o7 oot A ground state preparation. ,
NS saturation point. Left of this point, exponential 10-7 ‘ g~ l l i L I ‘ * |
convergence is achieved in the number of qubits. Right of | \ 7 : DRy (exx1t) FoTHH T HH B Rz (evyvr L) Fb | [0 > 4 6 3
this point, conjugate momentum space is undersampled and 12| \ /\",' "N = 2| I : - .
- . i - — (W T X —_ — t —_— - -
precision degrades. Tuning plots for the JLP and Harmonic 10 : mNg =3 Rz (cixz37) D 0.2 - Nnoisc parameter r
Oscillator bases are shown at right for an interacting 0+1 f mNq = g' I 0.4] T - S ———— =% Noise Extrapolation:
. . . i —-17 | — — 0.4+ - . - ]
dimensional scalar field. For such a localized wavefuncton, 1077 =Na * H oA - | Without quantum error correction on hardware with
_ _ _ o _ - | | | | | | | | | | | | Py imperfect gates, "classical error correction” (data analysis) is
the HO basis provides higher precision per qubit. N O H S H[—D = I O 0.6 — 1 crucial for interpreting and understanding the results of
0 2 4 6 8 —0. —— _ _ !
b . I . d Noises - - g m YY) (bmqgx5) || quantum computing experiments. Of critical concern are 2-
I‘ECISIOI-‘I, mprovemen E_‘“ olise. | _ _ | no D— Rz (evvzay) —D S Rz (exxza7) D : (HY (ibmgx5) | qubit entanglement errors, measurement/read-out errors,
To implement the conjugate momentum term, one option is to retain field- 14 2 — l — 0.8 1 over/under rotations, bit flips, phases errors, etc. We utilize
space locality with a nearest neighbor operator. This choice introduces - Oor @Pmax I \ M m extrapolated | a 1-parameter polynomial extrapolation to capture the
polynomial errors in the field digitization, destroying the exponential Wy AT T AT i i ’ 1.0 == T | leading effects of the first of these. The noise parameter, r,
_ allowed by the NS sampling 0.2 ; D D 1l | indicates the number of CNOTs used in place of each CNOT
1—Slte (free) Pnax = 5.5 theorem (green points at left) 0.1 - Representing de-localized wavefunctions benefits l L : 1 of the VQE ansatz (containing only 2 CNOTs in the original,
- ‘ ‘ ‘ ‘ \ ‘ ‘ ‘ =] - - _. :,____ < S _____,: _ H H : 2 —_— I : : : : I : : : : I : : : : I : : : : I : : : : I : : : : I : : : : I — I i i i I I
1000 - 3! 4 5! s |As is done with the Symanzik > 0.0 . from the structure-agnostic basis of JLP. With a PRz (czxz+7) P ) , 1.2 0 " , 3 4 = p - r“ 1, circuit), eﬂ‘ectllvelxcl:I ampllfymlg this source of elrl;_or al:_d
. . ! ! - - . 0.1} . — ] : : : allowing Its extrapolate removal. As seen at left, this
7 | | |  |action in Lattice QCD, the : - H | tuned basis of 6 qubits, the symmetic ground state ) :
| | | _ : _o02l \ mp=2| | T _ _ _ W B B B O O extrapolation impacts the calculated ground state energy at
1! ! T e e e, ! | polynomial errors in the z . is distinguished from the asymmetric excited state. o
¢ ., B A S . noise parame Cr r the 10% level.
, | | ° ¢ e | *eeeceed | digitization can be order-by- -5 o 5 1 it A. 1 2 O
< | -:, o ) e ceccsttesssscecctss  order suppressed by adding higher- ¢ S _Sl e ( | ” ) T I
~— | | | - -
— 0.001! | : | ' order operators to the Hamiltonian 100.000 N - S U (4) PFO a atO e yI l a I I l I CS
(=) — @-Local L +....-.......---f (blue points at left). In Quantum S A W it ey p g -
. - . - - N
L _ i | ' computing, it is possible to fourier * \ ~NY ! v
© 106 |M &°-improved o= 10~ | | | transform to conjugate mMmomentum o 7 ) S Y | |
S E _10e | : - -9 B = 0.001 : avy] ) l 1401 [ Y02 [ Z0s Xo. [ H S—1H Xz | Zos [| Y=02 [| 201 |— TSI A S E
” ] Exact o= : | | space wh_ere the Pi operator is diagonal, Z * ) A * _ B Analytic (¢"e*) @ ibmqx2 (e e*) |
_g| | Exact o=10° | | | allowing improvement to all orders. Kl X . L | | 1.5¢ . 5 . > |
" 5 exact o=102| | sl ieeeeesssseed | With quantum noise, the NS saturation -o 10-8 Iy ) 03 [7| Y05 [ 200 D 205 D L0 \“ T [ %06 J| =05 [| £0s ST W Analytic (£7) ® ibmax2 (E7) -
| | ' | point should be tuned to match the -5 A m
10-12| B Exact Lol | : | expected precision of quantum D ',' An interesting observable of the Schwinger model is the evolution of electron-positron pair N~
‘ ‘ ‘ ! - ‘ ! ‘ ‘ —1 hardware. S_ ; =N =4 production (as sourced by the Hamiltonian hopping term) following initialization of the empty é é
5 10 20 . 10—13 | H Q B configuration. At right, we show data and theoretical values for both this pair production and the — é @
tat it ll DnQ —_— 5 expectation value of the energy in the electric field. The solid curves are exact results while the :
states per siie } InQ — 6 data points are quadratic extrapolations (in the noise parameter r) obtained with the ibmqgx2 =
+ attlce an IrCU Itr ny quantum computer. While there is an additional configuration containing two electron-positron : é
10—18 """"""""""""""""""""""""""""""""""""" pairs whose dynamics are not represented here, the energy in the electric field is seen to correlate P ¢
' ' — ' naturally with the presence of charged particles. For this calculation, the SU(4) propagator 4+ o &
. 0 10 20 30 40 50 decomposition of [4] is utilized---the nine angles of the above circuit are classically calculated as a U ¢ s ¢ -
Basis ng | 2-body 3-body 4-body 5-body 6-body 7-body 8&-body 9-body 10-body 11l-body 12-body CNOT function of time. As the structure and depth of the quantum circuit then used to propagate to time ¢ ®d
g 3 188 n t is independent of £, precision of the expectation values is also independent of the scaled time.
JLP 4 16 32 7o — - TSR mm o mm
5 25 50 The field operator in the JLP basis can 2.9 or ¢max Y 4 e
6 36 72 be written as a sum of single-qubit w 0.7 | | . . . . . . . . .
no nZ, 2nZ, operators. As a result, the qubit ¢ | Tl . o 10 15 20
> 1 6 9 S0 interactions for each spatial site are [
3 1 8 30 56 49 1,152 limited to two-body operators (QFT and mass term) and four-body l 0'6f l d t‘
HO 4 1 10 47 140 271 330 225 11,264  operators (fourth-order self-interaction) for the Trotterized time [ o ] Sca e lme
5} 1 12 63 244 630 1204 1663 1612 961 89,600 evolution. Pauli decomposition of the HO propagator contains i 0°5:' """""" B S 7 A
6 1 14 93 392 1186 2772 5154 7560 8541 7182 3969 626,688 interactions between all qubits in the site register, causing the number A~ ; o
Implementation of the Gradient Operator: of 2-qubit entangling operators to grow more rapidly in the HO basis. l +Q) 0‘4f ® To reduce classical resources for time evolution, the Schwinger model
On the right, the quantum resources for representation of the scalar field at a single site are quantified. Basis ng | 0-body  1-body 2-body 3-body  4-body  5-body  6-body CNOTs | ? e o (m Trotter 5t =0.1r =1 (ibmqx2)] propagator can be decomposed into a sum of 7 Paulis (see statics
In order to connect the qubit registers to build lattices in higher spatial dimensions, we quantify the cost of 2 ! 8 2 8 [ 3 0'3f ® m Trotter 5t =0.1r =3 (ibmqx2) above) and the exponentials implemented individually, Trotterizing the
a nearest neighbor decomposition of the gradient operator in field space (table above). As was the case in JLP i } ;3 162 1 ?j [ = Trotter 6t = 0.1 r =5 (ibmqx2) evolution. Now, rather than fixed as Iin the SU(4) decomposition
the single site, the JLP basis requires only 2-qubit interactions between the two site registers while the HO 5 1 26 20 5 110 I 0°2f m Trotter 5t = 0.1 r =7 (ibmqx2) ] method, the required coherence time increases with the scaled time.
basis requires entangling interactions between all qubits within the pair of site registers. The resulting 6 1 32 30 15 ___210 ° 2 Trott r6t—0.1 (extr l‘:d) On the left is the probability of finding an electron-positron pair in the
number Of CNOTS nalvely reqUired to interact two 6_qu|t site I"egiSter'S dlffel"S by a faCtOI" Of N87OO. AsS JLP Q 1 4nQ — 6 2 x ( 2@) ( 4Q) 8( 2Q) +6< f) I 0.1+ otte 5 : °2 e_XlaPO a e2 1 tWO_Spatlal_Slte Schwinger model from the |nit|a“y_empty State’
was the case for the conjugate momentum operator, the QFT could be used to remove polynomial errors in 2 1 3 2 4 : $ (L UEeirse ou 83 U2is 19 23 11 (U aapas) A showing dynamical quantum fluctuations. In the unshaded region, the
the lattice spacing. However, the proposed retention of locality for the gradient avoids both the maximum o . X ° o i 10 . < I T T e T blue points are quadratic extrapolations to "zero noise” in a parameter,
size of entangling operators and the computation time for trotterized time evolution from growing with the 5 1 7 22 32 44 22 612 g\’é\\ ) ) ) ) ) r. For a step size of 0.1, the coherence time is exceeded in the gray
size of the lattice---a naturally-motivated and desrable scaling. 6 ! 8 29 a4 84 o8 46 1982 Pga@ scaled time region and the measured probabilities flatten to the classical value.
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